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ABSTRACT 

The magnetic critical point exponent (β) of one-dimensional Ising ferromagnetism was calculated for one-break 

configurations. In the limit of the applied magnetic field (H) approaches zero and the number of spins (N) approach 

infinity, the non – zero magnetization per particle was obtained using Fe, Ni, CrBr3 and EuS materials as case studies. 

The calculated values of magnetic critical point exponent (β) for Fe, Ni, CrBr3 and EuS at N = 100 are 0.340 ± 

0.042; 0.420 ± 0.070; 0.368 ±0.005 and 0.330 ±0.015 respectively. 

According to Stanely [13], the range of values for magnetic exponent (β) is 0.3 – 0.5, which is in agreement with 

the results obtained. The experimental values of critical point exponent (β) of ferromagnetic is presented in Table 10; and 

is adopted from Itzykson and Drouffe [10]. 
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1.0 INTRODUCTION 

Magnetism is an important and interesting concept in solid state physics. In fact all materials; insulators, 

semiconductors and conductors (metals) exhibit the phenomenon of magnetism. Magnetism can be classified as 

diamagnetism, paramagnetism and ferromagnetism.  

Diamagnetic materials possess no net magnetic moments of their own origin. They do not posses magnetization in 

the absence of an applied magnetic field. When an external magnetic field is applied to such materials their atoms acquire 

magnetic moments whose direction is opposite to that of the applied field [1]. Paramagnetic materials are made up of 

atoms that posses their own magnetic moments, which are aligned in different directions. In such a configuration the 

material does not possess net macroscopic magnetization. When an external field is applied, the magnetic moments align in 

a definite direction. 

Ferromagnetic materials have atoms possessing atomic moments that are aligned microscopically in particular 

directions. In such a way, different portions of the ferromagnetic materials have net magnetization per unit volume. 

Application of external magnetic field also strengthens the magnetization produced in such materials [2]. They are able to 

retain a substantial amount of magnetization. Of most practical and industrial applications are materials exhibiting 

ferromagnetism due to their ability to produce magnetization even in the absence of an applied field. Ferromagnetism are 

found useful as applications in electronic devices such as magnetic tapes, digital computer memories and in ferrite 

microwave devices. 
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According to Wolf [3], in order to identify materials with an Ising – like microscopic Hamiltonian, one needs to 

understand the behaviour of individual magnetic ions in a crystalline environment. The basis for this understanding comes 

from the early work of Van Vleck, as defined with the advent of paramagnetic resonance in the 1950’s and the introduction 

of the spin Hamiltonian [4]. Medelung [5] identified that the interactions in magnetism have been explained by various 

theories and models. One of these models is the Ising Model, which could account for observed phenomena in 1 – D, 2 – D 

and 3 – D systems. A very important concept in ferromagnetic material is the issue of phase transition. Ferromagnets have 

spontaneous magnetization only at temperatures below a characteristic temperature known as the Curie point. Above the 

Curie point, the spontaneous magnetization ceases and the material become paramagnetic. The Curie point is a feature of 

all ferromagnetic materials and is constant for different materials. The thermodynamical quantities of the material also 

change on crossing the Curie point. Experimental results and detailed calculations have shown how the thermodynamic 

properties behave when approaching the Curie point [6]. 

The study of critical phenomena both experimentally and theoretically is the determination of the asymptotic law 

governing the approach to a critical point. The focus of this paper is on the calculation of magnetic exponent (β) using the 

1 – D Ising model over one break. The order parameter (m) is a measure of the degree to which the magnetic moments are 

aligned throughout the crystal and is called the zero-field magnetization. 

2.0 THEORETICAL BACKGROUND CONSIDERATION 

2.1 Ising Model 

The Ising model is an important paradigm because it captures the physics of several physical systems with short-

range interactions. The standard model is a system of spins on a lattice with nearest neighbour interactions. 

H = - ∑ ∑
=

N

1
iji S H  -  SS  

i
ijI                                                                    (2) 

Where Iij = 
2

ji

J

−
                                                                    (3) 

Equation 1 is a one dimensional ferromagnetic model; where H is the external magnetic field; Iij is the interaction 

energy between neighbouring spins; SiSj are the spins situated at regular lattice sites; H represents an external magnetic 

field which applies to all spins on the lattice. Both Si and Si can independently assume either of the two values of H, +1 and 

–1. The constant J in equation 2 is called the coupling constant, representing the interaction between nearest neighbours. It 

is also called the exchange parameter or effective interaction strength. |i – j| is the distance between spin sites i and j. 

In the present discussion we concentrate on the simplest version of the model, with positive coupling constant J 

between nearest neighbours only, and homogeneous external field H. Also take the spins values si = ± 1, that is, dealing 

with spin – ½ particles. Both si and sj can independently assume either of the two values of +1 and – 1. Our objective is to 

determine the stable phases of the system in the thermodynamic limit, that is, when the number of spin N → ∞ and the 

external field H → 0. In this sense, the physics of the model is dominated by the interactions between nearest neighbours 

rather than by the presence of the external field; the latter only breaks the symmetry between spins pointing up (along the 

field) or down (opposite to the field). The phases of the system are characterized by the average value m of the total 

magnetization M at a given temperature: 
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m (T) = ∑=
i

iS  M  ,M                                                                                  (4) 

From the expression for the free energy of the system at temperature T 

F = E – TS = M  - TS                                                                    (5) 

There are two possibilities; first, that the stable phase of the system has average magnetization, which is called the 

disordered phase; this phase, is favoured by the entropy term. Second, that the stable phase of the system has non-zero 

average magnetization, called the ordered phase; this phase is favoured by the internal energy term. 

In one dimension, the nearest neighbour Ising model does not exhibit a phase transition at finite temperature. This 

model has no time dependent dynamics. In this respect, it is unlike the gas model and quantum mechanical models, in 

which the Hamiltonian function or operator determines the equation of motion. 

The equilibrium properties of this model can be derived by the method of fixed temperature. The solution to the 

zero – field, H = 0 case is considered. If the temperature T = 0, then either all si are + 1 or all sj are –1 so that H is a 

minimum, with a value 

E (T = 0) = - J(N – 1)                                                                    (6) 

When T > 0, then some of the si will be +1 and the others –1. The boundary between +1 region and the –1 region 

is called the partition point. At T = 0, there is no partition point and at low temperatures, the partition points are few. The 

energy of each partition point is 2J. This model is then transformed to a model of a gas of partition points. The number of 

partition points is not constant, so its chemical potential is zero. 

2.3 The Magnetic Critical Point Exponent (β) 

Critical point exponents describe the behaviour near the critical point of the various quantities of interest at phase 

transition. Examples are the exponents that describe: pressure, heat capacity, susceptibility, magnetization, energy and 

others. Among the critical exponents for magnetic systems, are those for specific heat, α; magnetization, β; isothermal 

susceptibility, γ; and correlation length, ν. These are not all independent, and it is possible to derive an inequality such as: 

α + 2β + γ ≥ 2; which was given by Yeomans [8]. According to Tian and Gui [9] when ferromagnetic system is considered 

α is the critical exponent of susceptibility; β is the critical exponent of order parameter; γ is the critical exponent of the 

specific heat; and δ is the critical exponent of the magnetic field coupled with order parameter. Their experimental values 

are stated as follows; α = 0.104 ± 0.003;β = 0.325;γ = 1.23 and δ = 5.2 ± 0.15 

Tian and Gui [9] also stated that experimental physicists discovered that the critical exponents about the 

thermodynamic quantities in various phase transitions satisfy the same scaling laws as:   

α = 2β + δ ≈ 2  γ ≈ β (δ - 1)                                                     (7) 

According to Itzykson and Dronffe [10], the six commonly recognized critical points exponents are: α,β,γ,δ,η and 

ν. The definitions of the first four are given as: 

CH ≈ |t|-∞ when H = 0   M ≈ |t|β when H = 0 
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χ  ≈ |t|-γ when H = 0 H ≈ Mδ when H = 0 

Critical systems have at least one order parameter. The order parameter is some quantity that takes on two values; 

one above criticality and one below. For the Ising system the order parameter is the one-dimensional magnetization of the 

system. 

Cleary at low temperatures in the Ising model, all spins will try to align in the same direction. However at higher 

temperature, thermal fluctuations will tend to randomize spin orientation. Experimentally it is known that ferromagnetic 

possess a critical temperature at which the total magnetization of the system differs from zero. Temperatures below the 

critical temperature have a finite magnetization whereas temperatures above the critical point have zero magnetization. 

Also experimentally, it is known that critical systems will have nearly identical critical exponents it they have the same 

physical dimension as well as the same dimension of the order parameter. In this way, all three-dimensional 

ferromagnetism are the same. The ferromagnetism, which are characterized by the existence of a spontaneous 

magnetization, are given by: 

mo (t) = T)  m(H,  
0→H

lim                                                                     (8) 

The order parameter varies as (-E) β where ∈ ≡ 
c

c

T

T  -  T
 

The magnetic exponent (β) is also define as: mo (T) ≈ (T - T∈) β                                    (9) 

That is when the external field H vanishes; the magnetization M below Tc is a decreasing function of the T and 

vanishes at Tc. A more natural definition of the critical point exponent (β) is defined as: 

β = 
)(- 

(T)m  
  o

0 εε ln

ln
lim

→
                                                                  (10) 

Critical point exponents are frequently determined by measuring the slopes of log – log plots of experimental 

data, since l1 Hospital rule with the equation above implies that  

β ≡ 
)(-   d

m) (  

εln

lnd
                                                                   (11) 

2.4 Partition Function Z and Magnetization M 

The partition function is an unrestricted sum of Boltzmann factors over all accessible states, irrespective of their 

energy. Hence it is generally easier to derive statistical thermo-dynamical results using the partition function. 

Classical and quantum statistical mechanics show that all the thermo-dynamical properties of a system can be 

expressed in terms of ln Z and its partial derivatives. 

The magnetic partition function Z(H, T) for Ising model is given as: 

Z = ∑∑ ∑
1 2 NS

-tHe    ......
S S

                                                                 (12) 
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where each si ranges independently over the values ± 1 and there are 2N terms in the summation; also t = 1/ kBT. The 

thermodynamic function as related to magnetization is given as: 

 Magnetization m (H, T) = ∑
=

><=






∂
∂−

N

1  i
i   S      

KT

T) (H, F
  

H
                                               (13) 

Where < > denotes ensemble average. The quantity m (0, T) is called the spontaneous magnetization. When it is 

non-zero the system is said to be ferromagnetic, while when it is zero, the system is said to be paramagnetic. The 

magnetization m, plays the role of the order parameter, which determines the nature of the phase above and below the 

critical temperature. While the critical exponents describe the behaviour of various physical quantities close to the critical 

temperature.  

3.0 NUMERICAL COMPUTATION 

The spins of the one-dimensional ferromagnetic is as shown in figure 1, which is a simple one dimensional arrow 

shape, capable of assuming two discrete orientations via: +1 for spin up and –1 for spin down. 

↑ ↑ ↓ ↑ ↓ ↑…  ↑N 

1 2 3 4 5 6 

Figure 3.1: Schematic Diagram of the Spins Using Arrows 

 

3.1 Computation for N = 3 Spins 

The schematic diagram representing each state of the system for N = 3 is shown in Table 1. From the schematic 

diagram there are 23 (i.e. 2N) configuration states of the system. The partition function is given as the sum of the partition 

functions of all the configuration states. There are two nearest neighbours to the si under consideration. 

Si = + 1 Sj = ± 1 si = - 1 sj = ± 1 
Orientation Hamiltonian Orientation Hamiltonian 
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↓↓↑ 4

J−
 - H 

 
↓↓↓ 4

J−
 - H 

 
↓↑↑ 4

J−
 + H 

Figure 3.2:  Schematic Arrowed Spin Diagram for N = 3 
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Putting Z = exp (-2Ht)                                                     (15) 

Ht

Z

∂
∂

 = -2 exp (-2Ht) = -2Z                                                                   (16) 

Equation (14b) becomes: Z = [exp (3Ht)] {Co + C1Z + C2Z
2 + C3Z

3}                                  (17) 

where Co = C3 = exp 








4

9Jt  and C1 = C2 = 2 exp 






 −
4

Jt  + exp 






 −
4

7 Jt  

ln Z = 3Ht + ln [Co + C1Z + C2Z
2 + C3Z

3 + …]                                    (18) 

Total magnetization m ≡ 
z

Zln

)Ht(

z

)Ht(

Zln

∂
∂

=
∂

∂
=

∂
∂

    
 

 

Magnetization per particle is m = M/N and for this case  

m = ⅓ M = 
z

Zln

∂
∂

                                                                  (19) 

Using equation (13) and equation (14) 

m = ⅓ 
z

Zln

∂
∂

 = 1 - 












+++

++
2Z3C    2Z2C    Z1C  0C

2Z33C    Z22C  1C
  

3

2
Z                                                  (20) 

In the limit H → 0  z → 1 and the magnetization per particle becomes  

m ≡ ( ) ( )Ht3

z ln
lim

Ht3

z ln
lim

1Z0H ∂
∂=

∂
∂

→→
         

Spontaneous magnetization per particle of equation (15) is  

m = 1 - 












+++

++

3C   2C    1C  0C

33C    22C  1C
  

3

2
z                                                    (21) 
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In order to minimize the rigorous calculation for larger values of N, an approximation of one-break is made. This 

simply means a set of spins on the same side are pointing upwards while the remaining spins point downwards or vice 

versa or all the spins are pointing in the same direction. Any other configuration states of the system are neglected.  

3.2 Computation for the General Case (2N + 1) Spins 

An important point is that the number of configuration states to be considered reduced drastically from 2N to 2N. 

Within the above approximation from Table 3.1, the asterisk states are neglected during calculations and the result is the 

same as before approximation. The schematic diagram of a general case where (2N + 1) spins are considered over all 

configurations with one break in their ordering is shown in Figure 3. 

i 
↑… ↑  ↑  ↑  ↑  ↓  ↓  ↓… ↓ 
-N  -3 –2  -1  0  1  2  3 … N 

(a) 

i 
↑…  ↑  ↑  ↑ ↑  ↑ ↓ ↓ ↓ ↓…↓ 

-N… -2 -1  0 1  j.. . .   N 
(b) 

Figure 3.3: Schematic Arrowed Spin Diagram for (2N + 1) Spins 

 

Figure 3 (a) is a situation where the i - th spin falls mid-way and j = 0, thus there are (N + 1) spins pointing 

upwards while N spins point downward. Figure3(b) is a situation where the j-th spin is not equal to zero; hence: upwards 

spins = N + j + 1 and  downwards spins = N – j; such that the effective magnetic field effect is given as 

NjH = [(N + j + 1)] – (N – j)] H = (2j + 1)H                                                                (22) 

The partition function of this system is given as: 

Z = 
( )

∑
=

∆+
µ

N-    

NjHt E      j0

j

tE
ll                                                                  (23) 

Where Eo is the energy of the system without any break, and ∆Ej is the change in energy. 

Ojo [11], showed that for:  ∆Ej = 2Jm2Rj                                     (24) 

And defined Rj as: 

Rj = Ro + ln 












+
+

2

22

)1(

j -  1)  (

N

N
                                                                   (25) 

Where Ro = ln (N + 1) + 0.8877  

Using equations (22) and (24) in equation (23) then:  

Z = 
( )∑

=

++
N

j

JmtE

N-    

1)H  (2jR    2
  j

2
0 lll                                                                   (26) 

The magnetization per particle of the system from equation (26) is given as: 
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m = ( ) z
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∂

+
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∑
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                                  (27) 

and in the limit H → 0 

m ≡ 
j

j

RJtm
N

j

RJtm
N

j

2

2

2

N-    

2

N-    

   

  .
1) (2N

1)  (2j
  . 

l

l

∑

∑

=

= +
+

                                                                 (28) 

From equation (25) 

Rj = Ro + ln 






















+

2

1    N

j
  -  1   = R0 + ln (1 + yj)                                                  (29) 

Where yj ≡ 
2

1    N

j









+
                                                     (30) 

In equation (28), putting  

X = 2Jtm2                                                                                 (31) 

Then  m = q X                                                                                  (32) 

Where q2 = 
2J

TBK
    

2

1 =
Jt

                                                                                (33) 

Equation (28) can be rewritten as 

m = 

[ ]

[ ]X
jo

X
jo

yR
N

j

yR
N

j

)1ln(

N-    

)1ln(

N-    
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=
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=

∑
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                                                                (34) 

m2 = 0    j    if        0      
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)y - (1  
1) (2N

1)  (2j
    

X
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N-    
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j

2

N-    ≥≠









+
+

∑

∑

=

=
N

j

N

j
                                   (35) 

The required solutions are the values of m that will satisfy both equations (32) and (35). A computer program in 

C++ language was used to provide the solutions. 
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4.0 RESULTS AND DISCUSSIONS 

From section 3 above the following can be deduced: 

• As X increases, t increases and T decreases 

• As q increases t decreases and T increases 

That is q2 ∝ 
t

1
 ∝ T                                                                    (36) 

According to Ojo [12] the critical temperature for which the critical magnetization mi ≠ 0 is given by: 

KBTC = 1.47J                                                                                 (37) 

Using equations 33 and 37  

2
Cq  = 

J

TK
CB

2
 = 0.735                                                                                             (38) 

Using equation (36) together with the definition of exponents: 

∈ = 
c

c
2
c

2
c

2

T
T  -  T

    
q

q  -  ≈q
                                                                               (39) 

β = 
)(-ln    d

mln    

∈
d

                                                                                 (40) 

 β is calculated as the shape of the graph d ln (m) against d ln (-∈); which is the same as graph of (ln X) against |ln 

|∈||. Results for different elements for n = 100 and N = 1000 are presented in Tables 1 – 8. 

Table 4.1: Results of Fe when N = 100 

T X |ε| |ln X| |ln |ε|| 
100 0.0003480 0.9041 7.9632 0.1008 
200 0.0001740 0.8082 8.6563 0.2129 
300 0.0001160 0.7124 9.0618 0.3392 
400 0.0000870 0.6165 9.3494 0.4837 
500 0.00000696 0.5206 9.5726 0.6527 
600 5.8009 × 10-5 0.4247 9.7549 0.8563 
700 4.9722 × 105 0.3289 9.9091 1.1121 
800 4.3507 × 105 0.2330 10.0426 1.4568 
900 3.8673 × 10-5 0.1371 10.1604 1.9870 
1000 3.4805 × 10-5 0.0412 10.2657 3.1887 
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Table 4.2: Results of Fe when N = 1000 

T X |ε| |ln X| |ln |ε|| 
100 3.543 × 10-6 0.9041 12.5506 0.1008 
200 1.771 × 10-6 0.8082 13.2438 0.2129 
300 1.181 × 10-6 0.7124 13.6492 0.3392 
400 8.860 × 10-7 0.6165 13.9369 0.4837 
500 7.090 × 10-7 0.5206 14.1601 0.6527 
600 5.900 × 10-7 0.4247 14.3424 0.8563 
700 5.060 × 10-7 0.3289 14.4965 1.1121 
800 4.430 × 10-7 0.2330 14.6301 1.4568 
900 3.940 × 10-7 0.1371 14.7479 1.9870 
1000 3.540 × 10-7 0.0412 14.8532 3.1887 

 

Table 4.3: Results of Ni when N = 100 

T X |ε| |ln X| |ln |ε|| 
100 2.1112 × 10-4 0.8406 8.4631 0.1737 
200 1.0556 × 10-4 0.6811 9.1562 0.3840 
300 7.0374 × 10-5 0.5217 9.5617 0.6507 
400 5.2780 × 10-5 0.3624 9.8494 1.0154 
500 4.2224 × 10-5 0.2028 10.0725 1.5955 
600 3.5187 × 10-5 0.0434 10.2548 3.1380 

 

Table 4.4: Results of Ni when N = 1000 

T X |ε| |ln X| |ln |ε|| 
100 2.130 × 10-6 0.8406 13.0592 0.1737 
200 1.065 × 10-6 0.6811 13.7524 0.3840 
300 7.100 × 10-7 0.5217 14.1578 0.6507 
400 5.330 × 10-7 0.3624 14.4455 1.0154 
500 4.260 × 10-7 0.2028 14.6687 1.5955 
600 3.550 × 10-7 0.0434 14.8510 3.1380 

 

Table 4.5: Results of CrBr3 when N = 100 

T X |ε| |ln X| |ln |ε|| 
9 1.2178 × 10-4 0.7236 9.0133 0.3235 
12 9.1333 × 10-5 0.6314 9.3010 0.4597 
15 7.3066 × 10-5 0.5393 9.5241 0.6175 
18 6.0889 × 10-5 0.4472 9.7065 0.8048 
21 5.219 × 10-5 0.3550 9.8606 1.0355 
24 4.566 × 10-5 0.2629 9.9941 1.3360 
27 4.0592 × 10-5 0.1708 10.1119 1.7675 
30 3.6533 × 10-5 0.0786 10.2173 2.5431 
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Table 4.6: Results of CrBr3 when N = 1000 

T X |ε| |ln X| |ln |ε|| 
9 1.229 × 10-6 0.7236 13.6095 0.3235 
12 9.220 × 10-7 0.6314 13.8971 0.4597 
15 7.370 × 10-7 0.5393 14.1203 0.6175 
18 6.144 × 10-7 0.4472 14.3026 0.8048 
21 5.270 × 10-7 0.3550 14.4568 1.0355 
24 4.617 × 10-7 0.2629 14.5903 1.3360 
27 4.100 × 10-7 0.1708 14.7081 1.7675 
30 3.690 × 10-7 0.0786 14.8134 2.5431 

 
Table 4.7: Results of EuS when N = 100 

T X |ε| |ln X| |ln |ε|| 
6 9.2567 × 10-5 0.6364 9.2876 0.4520 
7 7.9340 × 10-5 0.5758 9.4417 0.5521 
8 6.9426 × 10-5 0.5152 9.5253 0.6633 
9 6.1712 × 10-5 0.4545 9.6930 0.7885 
10 5.5540 × 10-5 0.3939 9.7984 0.9316 
11 5.0491 × 10-5 0.3333 9.8937 1.0986 
12 4.6284 × 10-5 0.2727 9.9807 1.2993 
13 4.2723 × 10-5 0.2121 10.0608 1.5506 
14 3.9672 × 10-5 0.1515 10.1349 1.8871 
15 3.7027 × 10-5 0.0909 10.2039 2.3979 
16 3.4713 × 10-5 0.0303 10.2684 3.965 

 

Table 4.8: Results of EuS when N = 1000 

T X |ε| |ln X| |ln |ε|| 
6 9.340 × 10-7 0.6364 13.8837 0.4520 
7 8.010 × 10-7 0.5758 14.0379 0.5521 
8 7.010 × 10-7 0.5152 14.1714 0.6633 
9 6.230 × 10-7 0.4545 14.2892 0.7885 
10 5.600 × 10-7 0.3939 14.3945 0.9316 
11 5.090 × 10-7 0.3333 14.4898 1.0986 
12 4.670 × 10-7 0.2727 14.5769 1.2993 
13 4.310 × 10-7 0.2121 14.6569 1.5506 
14 4.000 × 10-7 0.1515 14.7310 1.8871 
15 3.740 × 10-7 0.0909 14.8000 2.3979 
16 3.500 × 10-7 0.0303 14.8645 3.965 

 

The tables obtained from the theoretical calculations were used to plot the following graphs, with the fitted 

equations showing coefficients of determination ranging from 0.9 to 1.0  
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Figure 4.1: Graph of | ln |x| | Against |ln |ε| | for Fe when N = 100 

 

 

Figure 4.2: Graph of | ln |x| | against |ln |ε| | for Fe when N = 1000 

 

 

Figure 4.3: Graph of | ln |x| | against |ln |ε| | for Ni when N = 100 
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Figure 4.4: Graph of | ln |x| | against |ln |ε| | for Ni when N = 1000 

 

 

Figure 4.5: Graph of | ln |x| | against |ln |ε| | for CrBr 3 when N = 100 

 

 

Figure 4.6: Graph of | ln |x| | against |ln |ε| | for CrBr 3 when N = 1000 
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Figure 4.7: Graph of | ln |x| | against |ln |ε| | for EuS when N = 100 

 

 

Figure 4.8: Graph of | ln |x| | against |ln |ε| | for EuS when N = 1000 

 

5.0 SUMMARY AND CONCLUSIONS 

Table 5.1: Summary of the Results Obtained 

Material 
Curie 

Temperature (K) 
Experimental 

values of β 
β- when         
N = 100 

β- when     
N= 1000 

Average 

Fe 1043 0.340 ± 0.400 0.320 0.330 0.325 
Ni 627.2 0.422 ± 0.070 0.450 0.370 0.410 

CrBr3 32.56 0.368 ± 0.005 0.375 0.378 0.376 
EuS 16.50 0.330 ± 0.015 0.350 0.345 0.347 

 

According to Stanely [13], the range of values for magnetic exponent (β) is 0.3 – 0.5, which is in agreement with 

the results obtained. The experimental values of critical point exponent (β) of ferromagnetic is presented in Table 10; and 

is adopted from Itzykson and Drouffe [10]. 
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Table 10: Experimental Values adopted from Itzykson and Drouffe. 

EXPT MFT ISING – D HEIS 
0.32 – 0.39 0.50 0.31 0.30 

 

Where EXPT is the experimental values from a variety of systems; MFT is the Mean Field theory values; ISING 

is the Ising Model values in the D – dimension array used; and HEIS is the values for Classical Heisenberg Model  
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